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Observations
• Programmable Networks Trends:

– Not  in the data plane for IP.
– More promising in the control plane.

• Custom call processing for internet telephony is a 
promising area:
– People really want it.
– Service platforms and soft switches are shipping.
– There is a lot of activity in standards groups (IETF, 

JAVA community).
– Same resource problems as traditional Active Nets

• Security, Accounting and Resource Control



Project Goals
• Create a user-programmable service platform for extended 

SIP-enabled IP Telephony Services.  
• Can lessons learned from Active Networks be applied to 

programmable SIP call processing environments to enable 
user programmability?
– Analogous to Active Networks in several ways.
– Programmable SIP Call processing enable user injection of service 

code.
• Key Issues:

– Security
– Load and resource control 

• Starting Point: 
– DARPA funded NIST Active Nets project (Virgine Galtier, Kevin 

Mills et al.),  Active Services work.



SIP and SIP services

• SIP is a HTTP-like signaling protocol for IP 
telephony and conferencing.

• A SIP service is an event triggered piece of code 
that runs on a SIP server. 

• Event is generated by arrival of a message at a 
server or change in server state.

• Event can be:
– low-level at the level of individual messages.
– or semantic (at the level of a call).



SIP Network Components
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SIP Services  (Service Creation)
• Examples of simple programmable services:

– Call forwarding based on time of day / caller location.
– Call redirection based on caller.

• Much industry activity:
– SIP CGI / SIP CPL / SIP Servlets
– JAIN-SIP/JAIN-SIP-LITE/JAIN SCE/SCML
– Current schemes constrain programmability for user 

uploaded services (e.g.. CPL).
• Our Goal:

– Fully general User Programmable SIP Services.
– Domains of applicability: SIP Servlets, Upload able test 

scripts for SIP test tool.



Driving Application: 
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Requirements for Up-Loadable Test 
Scripts

• Security: Need to protect the test server 
from unauthorized access to resources.

• Resource containment: Need to protect the 
server from denial of service attacks.



Restricting access to resources

• Use existing solutions:
– Restrict class loading.
– Access to all sensitive resources (such as files 

and network) will be via resource monitors.
– Use Security policies to define capabilities for 

resource access.
• Security Manager to restrict resource access.
• Only wrapped classes are available to service 

scripts.



Controlling Resource Usage of a 
Running Script

• Two problems:
– Admission control: Service platform should 

have an interface to query the incoming service 
script for what resources it needs.

– Run-time control: Service platform should be 
able to abort execution for misbehaving service 
scripts.



Generating the Resource 
Signature

• Resource Signature 
– A function that represents a service that can be used to determine 

whether or not a service will run.
– An incoming service script declares what resources it will need by 

its resource signature.
• Signature can be used by container for admission control 

and load control. 
• Signature can be generated manually by user or generated 

with a signature generation tool.
• Signature generation tool will:

– Generate a function that can be called by the container to query for 
required resources.



Structure of a Resource Signature

• Follow the approach developed in the previous 
work at NIST (Galtier, Mills et al. )
– Application is represented by a finite state model with 

probabilistic transitions between states.
– Previous project only considered CPU resources. We 

will extend this to include message traffic and other 
relevant resources.

– Admission control of scripts is done by examining 
current system load and expected runtime load of the 
incoming script.

– A malicious script can lie about its resource signature 
so we need runtime enforcement



Controlling Resource Usage of a 
Running Script

• Use byte code rewriting technique:
– Determine basic blocks.
– Call back to resource checking hooks at the end of each 

basic block to see if allowance has been exhausted.
– Exit the service script if allowance has been exhausted.

• Portable metrics such as byte code allowances will be used for 
CPU time representation.

• Message count and size will be used for network.
• Coarse grained metrics such as object allocation rate and size 

will be used for memory.
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Related Work

JKernel: Uses byte code rewriting for safety. Allows users to upload 
HTTP servlets. http://www.cs.cornell.edu/slk/

JSeal2: Mobile agent system that uses byte code rewriting for runtime 
resource enforcement: http://www.jseal2.com/

KaffeOS: Process isolation and resource containment in 
JAVA. http://www.cs.utah.edu/flux

DARWIN : Resource management for Application Aware 
networks 

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/www/darwin/



Deployment
• Developed technology will be deployed in our web test 

system and made available on the ABONE for 
experimentation.

• Resource monitoring and enforcement framework for SIP 
Servlets will be proposed to the JAVA community for 
comment and possibly incorporated into the servlet spec.

• Developed code will be distributed as part of the NIST-SIP 
package.
– Already a popular package for prototyping and development 

(1000s of downloads).
– Implements JAIN SIP and will incorporate Servlets.
– Test tool already developed.



Schedules

• Jan 2002:
– Exploration and evolution of the design.

• August 2002:
– SIP Servlet implementation and development of 

resource monitor technology.
– Release SIP Servlets as part of NIST-SIP 1.2

• December 2002:
– Integration of resource monitor with the servlet engine.
– Release SIP Servlets with resource control as part of 

NIST-SIP 1.3



Schedules

• August 2003
– Integration into our test system
– Gather more feedback and debug

• December 2003
– Project completion and deployment on the 

ABONE.


